Algorithms and uncertainty sets for data-driven robust shortest path problems
André Chassein,
Trivikram Dokka and
Marc Goerigk
European Journal of Operational Research, 2019, vol. 274, issue 2, 671-686
Abstract:
We consider robust shortest path problems, where the aim is to find a path that optimizes the worst-case performance over an uncertainty set containing all relevant scenarios for arc costs. The usual approach for such problems is to assume this uncertainty set given by an expert who can advise on the shape and size of the set.
Keywords: Robustness and sensitivity analysis; Robust shortest paths; Uncertainty sets; Data-driven robust optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718308579
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:274:y:2019:i:2:p:671-686
DOI: 10.1016/j.ejor.2018.10.006
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().