An optimization approach to epistasis detection
Lizhi Wang and
Maryam Nikouei Mehr
European Journal of Operational Research, 2019, vol. 274, issue 3, 1069-1076
Abstract:
Epistasis refers to the phenomenon where the interaction of multiple genes affects a certain phenotype in addition to their individual additive effects. Similar epistatic effects are also ubiquitous in other application areas, such as gene-environment interactions, where a certain effect is triggered only when a particular combination of genes and environmental components is present. Epistasis detection has been recognized as a major challenge in the field of genetics. Previously proposed methods either focused on finding two-gene interactions using brute force enumeration or resorted to heuristic algorithms to search only a subset of the solution space. Herein we present an optimization approach that can identify the number of explanatory variables responsible for the epistasis as well as the exact combination of these variables. Results from simulation experiments using a soybean data set suggested that the proposed approach had a 95.5% chance of correctly detecting second-order to fifth-order epistases, which was a significant improvement over two alternative approaches in the literature.
Keywords: Bioinformatics; Epistatic effect; Multiple linear regression; Mixed integer linear programming; Optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718308853
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:274:y:2019:i:3:p:1069-1076
DOI: 10.1016/j.ejor.2018.10.032
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().