Economics at your fingertips  

Carbon-efficient deployment of electric rubber-tyred gantry cranes in container terminals with workload uncertainty

Dayong Yu, Dong Li, Mei Sha and Dali Zhang

European Journal of Operational Research, 2019, vol. 275, issue 2, 552-569

Abstract: Rubber-tyred gantry cranes are one of the major sources of carbon dioxide emissions in container terminals. In a move to green transportation, the traditional diesel powered cranes are being converted to electric ones. In this paper, we study the deployment of electric powered gantry cranes (ERTGs) in container terminal yards. Cranes always move in-between blocks to serve different workload. ERTGs use electricity for most movements but switch to diesel engines to allow inter-block transfers between unaligned blocks. We exploit this feature and propose to consider simultaneously the CO2 emissions and workload delays to develop carbon-efficient deployment strategies. Moreover, unlike previous works we consider the workload uncertainty, and model the problem as a two-stage stochastic program. A sample average approximation framework with Benders decomposition is employed to solve the problem. Multiple acceleration techniques are proposed, including a tailored regularised decomposition approach and valid inequalities. A case study with sample data from a major port in East China show that our proposal could reduce significantly CO2 emissions with only a marginal compromise in workload delays. Our numerical experiments also highlight the significance of the stochastic model and the efficiency of the Benders algorithms.

Keywords: OR in maritime industry; Carbon-efficient; Crane deployment; Regularised decomposition; Stochastic programming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-03-16
Handle: RePEc:eee:ejores:v:275:y:2019:i:2:p:552-569