Gaussian processes for unconstraining demand
Ilan Price,
Jaroslav Fowkes and
Daniel Hopman
European Journal of Operational Research, 2019, vol. 275, issue 2, 621-634
Abstract:
One of the key challenges in revenue management is unconstraining demand data. Existing state of the art single-class unconstraining methods make restrictive assumptions about the form of the underlying demand and can perform poorly when applied to data which breaks these assumptions. In this paper, we propose an unconstraining method that uses Gaussian process (GP) regression. We develop a novel GP model by constructing and implementing a new non-stationary covariance function for the GP which enables it to learn and extrapolate the underlying demand trend. We show that this method can cope with important features of realistic demand data, including nonlinear demand trends, variations in total demand, lengthy periods of constraining, non-exponential inter-arrival times, and discontinuities/changepoints in demand data. In all such circumstances, our results indicate that GPs outperform existing single-class unconstraining methods.
Keywords: Revenue management; OR in airlines; Demand unconstraining; Gaussian process regression (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718310063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:275:y:2019:i:2:p:621-634
DOI: 10.1016/j.ejor.2018.11.065
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().