A unified framework for stochastic optimization
Warren B. Powell
European Journal of Operational Research, 2019, vol. 275, issue 3, 795-821
Abstract:
Stochastic optimization is an umbrella term that includes over a dozen fragmented communities, using a patchwork of sometimes overlapping notational systems with algorithmic strategies that are suited to specific classes of problems. This paper reviews the canonical models of these communities, and proposes a universal modeling framework that encompasses all of these competing approaches. At the heart is an objective function that optimizes over policies that is standard in some approaches, but foreign to others. We then identify four meta-classes of policies that encompasses all of the approaches that we have identified in the research literature or industry practice. In the process, we observe that any adaptive learning algorithm, whether it is derivative-based or derivative-free, is a form of policy that can be tuned to optimize either the cumulative reward (similar to multi-armed bandit problems) or final reward (as is used in ranking and selection or stochastic search). We argue that the principles of bandit problems, long a niche community, should become a core dimension of mainstream stochastic optimization.
Keywords: Dynamic programming; Stochastic programming; Bandit problems; Reinforcement learning; Robust optimization; Simulation optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (60)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718306192
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:275:y:2019:i:3:p:795-821
DOI: 10.1016/j.ejor.2018.07.014
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().