A cutting-plane method to nonsmooth multiobjective optimization problems
D.A.G. Vieira and
A.C. Lisboa
European Journal of Operational Research, 2019, vol. 275, issue 3, 822-829
Abstract:
The cutting-plane optimization methods rely on the idea that any subgradient of the objective function or the active/violated constraints defines a halfspace to be excluded from a set that contains an optimal solution: the localizing set. This algorithm converges towards a global minimum of any pseudoconvex subdifferentiable function. A naive extension for multiobjective optimization would be using simultaneously some subgradients of all objective functions for a given feasible point. However, as demonstrated in this paper, this approach can lead to a convergence towards non-optimal points. This paper introduces an optimization strategy for cutting-plane methods to cope with multiobjective problems without any scalarization procedure. The proposed strategy guarantees that its optimal solution is a Pareto Optimal solution of the original problem, which is also no worse than the starting point, and that any Pareto Optimal solution can be sampled. Moreover, the auxiliary problem is infeasible only if the original problem is also infeasible. The new strategy inherits the original theoretical guarantees of cutting planes methods and it can be applied to build other strategies.
Keywords: Multiple objective programming; Cutting-plane method; Pseudoconvex functions; Subdifferencial; Nonsmooth optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719300013
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:275:y:2019:i:3:p:822-829
DOI: 10.1016/j.ejor.2018.12.047
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().