EconPapers    
Economics at your fingertips  
 

Benders decomposition for very large scale partial set covering and maximal covering location problems

Jean-François Cordeau, Fabio Furini and Ivana Ljubić

European Journal of Operational Research, 2019, vol. 275, issue 3, 882-896

Abstract: Covering problems constitute a fundamental family of facility location problems. This paper introduces a new exact algorithm for two important members of this family: (i) the maximal covering location problem (MCLP), which requires finding a subset of facilities that maximizes the amount of customer demand covered while respecting a budget constraint on the cost of the facilities; and (ii) the partial set covering location problem (PSCLP), which minimizes the cost of the open facilities while forcing a certain amount of customer demand to be covered. We study an effective decomposition approach to the two problems based on the branch-and-Benders-cut reformulation. Our new approach is designed for the realistic case in which the number of customers is much larger than the number of potential facility locations. We report the results of a series of computational experiments demonstrating that, thanks to this decomposition techniques, optimal solutions can be found very quickly for some benchmark instances with one hundred potential facility locations and involving up to 15 and 40 million customer demand points for the MCLP and the PSCLP, respectively.

Keywords: Combinatorial optimization; Location problems; Covering; Benders decomposition; Branch-and-cut algorithms (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718310737
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:275:y:2019:i:3:p:882-896

DOI: 10.1016/j.ejor.2018.12.021

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:275:y:2019:i:3:p:882-896