Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems
Federico Pagnozzi and
Thomas Stützle
European Journal of Operational Research, 2019, vol. 276, issue 2, 409-421
Abstract:
Stochastic local search methods are at the core of many effective heuristics for tackling different permutation flowshop problems (PFSPs). Usually, such algorithms require a careful, manual algorithm engineering effort to reach high performance. An alternative to the manual algorithm engineering is the automated design of effective SLS algorithms through building flexible algorithm frameworks and using automatic algorithm configuration techniques to instantiate high-performing algorithms. In this paper, we automatically generate new high-performing algorithms for some of the most widely studied variants of the PFSP. More in detail, we (i) developed a new algorithm framework, EMILI, that implements algorithm-specific and problem-specific building blocks; (ii) define the rules of how to compose algorithms from the building blocks; and (iii) employ an automatic algorithm configuration tool to search for high performing algorithm configurations. With these ingredients, we automatically generate algorithms for the PFSP with the objectives makespan, total completion time and total tardiness, which outperform the best algorithms obtained by a manual algorithm engineering process.
Keywords: Scheduling; Stochastic local search; Automatic algorithm design (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719300207
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:276:y:2019:i:2:p:409-421
DOI: 10.1016/j.ejor.2019.01.018
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().