Bitcoin price forecasting with neuro-fuzzy techniques
George S. Atsalakis,
Ioanna G. Atsalaki,
Fotios Pasiouras and
Constantin Zopounidis
European Journal of Operational Research, 2019, vol. 276, issue 2, 770-780
Abstract:
Cryptocurrencies, with Bitcoin being the most notable example, have attracted considerable attention in recent years, and they have experienced large fluctuations in their price. While a few studies employ conventional statistical and econometric approaches to reveal the driving factors of Bitcoin's prices, research on the development of forecasting models to be used as decision support tools in investment strategies is scarce. This study proposes a computational intelligence technique that uses a hybrid Neuro-Fuzzy controller, namely PATSOS, to forecast the direction in the change of the daily price of Bitcoin. The proposed methodology outperforms two other computational intelligence models, the first being developed with a simpler neuro-fuzzy approach, and the second being developed with artificial neural networks. Furthermore, the investment returns achieved by a trading simulation, based on the signals of the proposed model, are 71.21% higher than the ones achieved through a naive buy-and-hold strategy. The performance of the PATSOS system is robust to the use of other cryptocurrencies.
Keywords: Artificial intelligence; Fuzzy sets; Neuro-fuzzy forecasting; Bitcoin price forecasting (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (62)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171930075X
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Bitcoin price forecasting with neuro-fuzzy techniques (2019)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:276:y:2019:i:2:p:770-780
DOI: 10.1016/j.ejor.2019.01.040
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().