EconPapers    
Economics at your fingertips  
 

On the calibration of the 3/2 model

Hilmar Gudmundsson and David Vyncke

European Journal of Operational Research, 2019, vol. 276, issue 3, 1178-1192

Abstract: We consider the problem of calibrating the 3/2 stochastic volatility model to option data. In comparison to the characteristic function of the Heston model, the characteristic function of the 3/2 model can be up to 50 times slower to evaluate. This makes the standard least squares calibration with finite-difference gradients unreasonably slow. To address this problem we derive the analytic gradient of the characteristic function in compact form. We then propose a computational method for the analytic gradient formula which caches intermediate results across the partial derivatives, in addition to the strike dimension and the maturity dimension. Compared to the fastest method of calibrating the 3/2 model which we could find in the literature, the method proposed in this paper is more than 10 times faster. We also discuss the issue of apparent non-convexity in the least squares calibration of the 3/2 model for market data. To tackle it, we propose a regularized calibration where the regularization point is obtained using “risk neutral” MCMC estimation of the model. We find that this approach is particularly well suited for the calibration problem as it generates naturally a consistent damping matrix for the parameter estimates, in addition to being very fast.

Keywords: Pricing; Model calibration; 3/2 model; MCMC estimation; Optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719301122
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:276:y:2019:i:3:p:1178-1192

DOI: 10.1016/j.ejor.2019.01.074

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:276:y:2019:i:3:p:1178-1192