EconPapers    
Economics at your fingertips  
 

Addressing endogeneity in aggregate logit models with time-varying parameters for optimal retail-pricing

Daniel Guhl

European Journal of Operational Research, 2019, vol. 277, issue 2, 684-698

Abstract: It is well known that price endogeneity is a severe problem in demand models for market-level data (e.g., aggregate logit models) because it leads to biased estimates and therefore incorrect managerial implications. If the price parameter varies over time, as is usually the case, the relevance of the issue increases because standard methods to correct endogeneity biases (e.g., generalized method of moments) fail. This paper presents a control function approach as a remedy. A comprehensive simulation study demonstrates this method’s suitability, such that addressing endogeneity with the control function approach is the best choice. Moreover, addressing the endogeneity problem incorrectly may be even more harmful than simply ignoring it. To further illustrate the control function approach, we analyze the demand for canned tuna using aggregate retailer-level data. Here, all utility parameters vary over time and price endogeneity is indeed an issue. Effectively addressing price endogeneity correct has positive economic consequences: a normative model analysis reveals that implementing the control function approach yields a 3 % increase in retailer profits.

Keywords: Retailing; Discrete choice; Endogeneity; Time-varying parameters; Heterogeneity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171930222X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:277:y:2019:i:2:p:684-698

DOI: 10.1016/j.ejor.2019.02.058

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:277:y:2019:i:2:p:684-698