A stochastic programming model with endogenous uncertainty for incentivizing fuel reduction treatment under uncertain landowner behavior
Tanveer Hossain Bhuiyan,
Maxwell C. Moseley,
Hugh R. Medal,
Eghbal Rashidi and
Robert K. Grala
European Journal of Operational Research, 2019, vol. 277, issue 2, 699-718
Abstract:
Reducing the potential damage caused by a wildfire is a problem of significant importance to land and fire managers. Fuel reduction treatment is a well-known method of reducing the risk of fire occurrence and spread on landscapes. However, officials seeking fuel reduction treatments on privately owned lands can only encourage it through incentive programs such as cost-share programs. This research developed a methodology that provides the basis for a decision-making tool to help managers allocate limited cost-share resources among a set of landowners to maximize wildfire risk reduction by implementing a hazardous fuel reduction treatment. A key feature of the methodology is that it incorporates uncertainty in the landowners’ decision of whether or not to implement treatment on their lands. The methodology is based on a stochastic programming model with endogenous uncertainty where the probability that a landowner accepts a cost-share offer to implement a fuel reduction treatment on their land depends on the offer amount. To estimate the probability that a landowner accepts a given cost-share offer amount, we used a predictive modeling technique to analyze landowner survey data. The results provide insight about the effects of different cost-share allocation strategies on the expected damage. Numerical experiments show that the risk-based allocation provides up to 37.3% more reduction in damage compared to other strategies that allocate equal cost-share amounts among landowners. Additionally, the results show that the solution quality is substantially sensitive to changes in the number of resource allocation levels.
Keywords: OR in natural resources; Two-stage stochastic programming; Predictive modeling; Monte Carlo simulation; Wildfire hazard (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719302255
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:277:y:2019:i:2:p:699-718
DOI: 10.1016/j.ejor.2019.03.003
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().