Influence maximization with deactivation in social networks
Kübra Tanınmış,
Necati Aras and
I.K. Altınel
European Journal of Operational Research, 2019, vol. 278, issue 1, 105-119
Abstract:
In this paper, we consider an extension of the well-known Influence Maximization Problem in a social network which deals with finding a set of k nodes to initiate a diffusion process so that the total number of influenced nodes at the end of the process is maximized. The extension focuses on a competitive variant where two decision makers are involved. The first one, the leader, tries to maximize the total influence spread by selecting the most influential nodes and the second one, the follower, tries to minimize it by deactivating some of these nodes. The formulated bilevel model is solved by complete enumeration for small-sized instances and by a matheuristic for large-sized instances. In both cases, the lower level problem, which is a stochastic optimization problem, is approximated via the Sample Average Approximation method.
Keywords: Metaheuristics; Matheuristics; Influence maximization; Bilevel modeling; Stochastic optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719303303
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:278:y:2019:i:1:p:105-119
DOI: 10.1016/j.ejor.2019.04.010
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().