Improving discriminating power in data envelopment models based on deviation variables framework
Mohammad Reza Ghasemi,
Joshua Ignatius and
Babak Rezaee
European Journal of Operational Research, 2019, vol. 278, issue 2, 442-447
Abstract:
Lack of discriminating power in efficiency values remain a major contention in the literature of data envelopment analysis (DEA). To overcome this problem, a well-known procedure for ranking efficient units; that is, the super-efficiency model was proposed. The method enables an extreme efficient DMU to achieve an efficiency value greater than one by excluding the DMU under evaluation from the reference set of the DEA model. However, infeasibility problems may persist while applying the super-efficiency DEA model under the constant returns-to-scale (CRS), and this problem tends to be compounded under the variable returns-to-scale (VRS). In order to address this drawback sufficiently, we extend the deviation variable form of classical VRS technique and propose a procedure for ranking efficient units based on the deviation variables values framework in both forms – CRS and VRS. With our proposed method, scholars who wish to prescribe theories based on a set of contextual factors need not remove large number of DMUs that are infeasible, thus avoiding problems in generalizability of their findings. We illustrate the performance and validate the efficacy of our proposed method against alternative methods with two established numerical examples.
Keywords: Data envelopment analysis; Infeasibility; Super-efficiency; Discrimination power; Ranking (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718307410
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:278:y:2019:i:2:p:442-447
DOI: 10.1016/j.ejor.2018.08.046
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().