Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty
André Chassein,
Marc Goerigk,
Jannis Kurtz and
Michael Poss
European Journal of Operational Research, 2019, vol. 279, issue 2, 308-319
Abstract:
We consider robust combinatorial optimization problems where the decision maker can react to a scenario by choosing from a finite set of k solutions. This approach is appropriate for decision problems under uncertainty where the implementation of decisions requires preparing the ground. We focus on the case that the set of possible scenarios is described through a budgeted uncertainty set and provide three algorithms for the problem. The first algorithm solves heuristically the dualized problem, a non-convex mixed-integer non-linear program (MINLP), via an alternating optimization approach. The second algorithm solves the MINLP exactly for k=2 through a dedicated spatial branch-and-bound algorithm. The third approach enumerates k-tuples, relying on strong bounds to avoid a complete enumeration. We test our methods on shortest path instances that were used in the previous literature and on randomly generated knapsack instances, and find that our methods considerably outperform previous approaches. Many instances that were previously not solved within hours can now be solved within few minutes, often even faster.
Keywords: Combinatorial optimization; Robust optimization; k-adaptability; Budgeted uncertainty; Branch-and-bound algorithms (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719304758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:279:y:2019:i:2:p:308-319
DOI: 10.1016/j.ejor.2019.05.045
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().