EconPapers    
Economics at your fingertips  
 

Detecting fake news for reducing misinformation risks using analytics approaches

Chaowei Zhang, Ashish Gupta, Christian Kauten, Amit V. Deokar and Xiao Qin

European Journal of Operational Research, 2019, vol. 279, issue 3, 1036-1052

Abstract: Fake news is playing an increasingly dominant role in spreading misinformation by influencing people’s perceptions or knowledge to distort their awareness and decision-making. The growth of social media and online forums has spurred the spread of fake news causing it to easily blend with truthful information. This study provides a novel text analytics–driven approach to fake news detection for reducing the risks posed by fake news consumption. We first describe the framework for the proposed approach and the underlying analytical model including the implementation details and validation based on a corpus of news data. We collect legitimate and fake news, which is transformed from a document based corpus into a topic and event–based representation. Fake news detection is performed using a two-layered approach, which is comprised of detecting fake topics and fake events. The efficacy of the proposed approach is demonstrated through the implementation and validation of a novel FakE News Detection (FEND) system. The proposed approach achieves 92.49% classification accuracy and 94.16% recall based on the specified threshold value of 0.6.

Keywords: Analytics; Fake news; Classification; Topic modeling; Text analytics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719304977
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:279:y:2019:i:3:p:1036-1052

DOI: 10.1016/j.ejor.2019.06.022

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:279:y:2019:i:3:p:1036-1052