EconPapers    
Economics at your fingertips  
 

Dynamic multi-priority, multi-class patient scheduling with stochastic service times

Antoine Sauré, Mehmet A. Begen and Jonathan Patrick

European Journal of Operational Research, 2020, vol. 280, issue 1, 254-265

Abstract: Efficient patient scheduling has significant operational, clinical and economical benefits on health care systems by not only increasing the timely access of patients to care but also reducing costs. However, patient scheduling is complex due to, among other aspects, the existence of multiple priority levels, the presence of multiple service requirements, and its stochastic nature. Patient appointment (allocation) scheduling refers to the assignment of specific appointment start times to a set of patients scheduled for a particular day while advance patient scheduling refers to the assignment of future appointment days to patients. These two problems have generally been addressed separately despite each being highly dependent on the form of the other. This paper develops a framework that incorporates stochastic service times into the advance scheduling problem as a first step towards bridging these two problems. In this way, we not only take into account the waiting time until the day of service but also the idle time/overtime of medical resources on the day of service. We first extend the current literature by providing theoretical and numerical results for the case with multi-class, multi-priority patients and deterministic service times. We then adapt the model to incorporate stochastic service times and perform a comprehensive numerical analysis on a number of scenarios, including a practical application. Results suggest that the advance scheduling policies based on deterministic service times cannot be easily improved upon by incorporating stochastic service times, a finding that has important implications for practice and future research on the combined problem.

Keywords: OR in health services; Patient scheduling; Markov decision processes; Approximate dynamic programming; Linear programming (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719305338
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:280:y:2020:i:1:p:254-265

DOI: 10.1016/j.ejor.2019.06.040

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:254-265