EconPapers    
Economics at your fingertips  
 

Discovering heterogeneous consumer groups from sales transaction data

Haengju Lee and Yongsoon Eun

European Journal of Operational Research, 2020, vol. 280, issue 1, 338-350

Abstract: We propose a demand estimation method to discover heterogeneous consumer groups. The estimation requires only historical sales data and product availability. Consumers belonging to different segments possess heterogeneous preferences and, in turn, heterogeneous substitution behaviors. For such consumers, the latent class consumer choice model can better represent their heterogeneous purchasing behaviors. In the latent class choice model, there are multiple consumer segments, and the segment types are not observable to the retailer. The expectation-maximization (EM) method is developed to jointly estimate the arrival rate and the parameters of the choice model. The developed method enables a simple estimation procedure by treating the observed data as incomplete observations of the consumer type along with consumer’s first choice. The first choice is the choice before the substitution effects occur. We test the procedure on simulated data sets. The results show that the procedure effectively detects heterogeneous consumer segments that have significant market presence.

Keywords: Revenue management; Demand untruncation; Demand segmentation; Latent class multinomial logit model; EM method (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719304734
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:280:y:2020:i:1:p:338-350

DOI: 10.1016/j.ejor.2019.05.043

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:338-350