EconPapers    
Economics at your fingertips  
 

Semidefinite programming lower bounds and branch-and-bound algorithms for the quadratic minimum spanning tree problem

Dilson Almeida Guimarães, Alexandre Salles da Cunha and Dilson Lucas Pereira

European Journal of Operational Research, 2020, vol. 280, issue 1, 46-58

Abstract: In this paper, we investigate Semidefinite Programming (SDP) lower bounds for the Quadratic Minimum Spanning Tree Problem (QMSTP). Two SDP lower bounding approaches are introduced here. Both apply Lagrangian Relaxation to an SDP relaxation for the problem. The first one explicitly dualizes the semidefiniteness constraint, attaching to it a positive semidefinite matrix of Lagrangian multipliers. The second relies on a semi-infinite reformulation for the cone of positive semidefinite matrices and dualizes a dynamically updated finite set of inequalities that approximate the cone. These lower bounding procedures are the core ingredient of two QMSTP Branch-and-bound algorithms. Our computational experiments indicate that the SDP bounds computed here are very strong, being able to close at least 70% of the gaps of the most competitive formulation in the literature. As a result, their accompanying Branch-and-bound algorithms are competitive with the best previously available QMSTP exact algorithm in the literature. In fact, one of these new Branch-and-bound algorithms stands out as the new best exact solution approach for the problem.

Keywords: Combinatorial Optimization; Spanning Trees; Lagrangian Relaxation; Semidefinite programming; Semi-infinite programming (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719306022
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:280:y:2020:i:1:p:46-58

DOI: 10.1016/j.ejor.2019.07.038

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:46-58