Convexifiability of continuous and discrete nonnegative quadratic programs for gap-free duality
N.H. Chieu,
V. Jeyakumar and
G. Li
European Journal of Operational Research, 2020, vol. 280, issue 2, 441-452
Abstract:
In this paper we show that a convexifiability property of nonconvex quadratic programs with nonnegative variables and quadratic constraints guarantees zero duality gap between the quadratic programs and their semi-Lagrangian duals. More importantly, we establish that this convexifiability is hidden in classes of nonnegative homogeneous quadratic programs and discrete quadratic programs, such as mixed integer quadratic programs, revealing zero duality gaps. As an application, we prove that robust counterparts of uncertain mixed integer quadratic programs with objective data uncertainty enjoy zero duality gaps under suitable conditions. Various sufficient conditions for convexifiability are also given.
Keywords: Global optimization; Quadratic optimization; Zero duality gaps; Mixed integer quadratic programs; Duality, (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719306629
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:280:y:2020:i:2:p:441-452
DOI: 10.1016/j.ejor.2019.08.009
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().