EconPapers    
Economics at your fingertips  
 

Recursive lower and dual upper bounds for Bermudan-style options

Alfredo Ibáñez () and Carlos Velasco

European Journal of Operational Research, 2020, vol. 280, issue 2, 730-740

Abstract: Although Bermudan options are routinely priced by simulation and least-squares methods using lower and dual upper bounds, the latter are hardly optimized. In this paper, we optimize recursive upper bounds, which are more tractable than the original/nonrecursive ones, and derive two new results: (1) An upper bound based on (a martingale that depends on) stopping times is independent of the next-stage exercise decision and hence cannot be optimized. Instead, we optimize the recursive lower bound, and use its optimal recursive policy to evaluate the upper bound as well. (2) Less time-intensive upper bounds that are based on a continuation-value function only need this function in the continuation region, where this continuation value is less nonlinear and easier to fit (than in the entire support). In the numerical exercise, both upper bounds improve over state-of-the-art methods (including standard least-squares and pathwise optimization). Specifically, the very small gap between the lower and the upper bounds derived in (1) implies the recursive policy and the associated martingale are near optimal, so that these two specific lower/upper bounds are hard to improve, yet the upper bound is tighter than the lower bound.

Keywords: Finance; Bermudan/American options; Optimal-stopping times; Recursive lower/upper bounds; Simulation and local least squares (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719305958
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:280:y:2020:i:2:p:730-740

DOI: 10.1016/j.ejor.2019.07.031

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-07
Handle: RePEc:eee:ejores:v:280:y:2020:i:2:p:730-740