Unsupervised quadratic surface support vector machine with application to credit risk assessment
Jian Luo,
Xin Yan and
Ye Tian
European Journal of Operational Research, 2020, vol. 280, issue 3, 1008-1017
Abstract:
Unsupervised classification is a highly important task of machine learning methods. Although achieving great success in supervised classification, support vector machine (SVM) is much less utilized to classify unlabeled data points, which also induces many drawbacks including sensitive to nonlinear kernels and random initializations, high computational cost, unsuitable for imbalanced datasets. In this paper, to utilize the advantages of SVM and overcome the drawbacks of SVM-based clustering methods, we propose a completely new two-stage unsupervised classification method with no initialization: a new unsupervised kernel-free quadratic surface SVM (QSSVM) model is proposed to avoid selecting kernels and related kernel parameters, then a golden-section algorithm is designed to generate the appropriate classifier for balanced and imbalanced data. By studying certain properties of proposed model, a convergent decomposition algorithm is developed to implement this non-covex QSSVM model effectively and efficiently (in terms of computational cost). Numerical tests on artificial and public benchmark data indicate that the proposed unsupervised QSSVM method outperforms well-known clustering methods (including SVM-based and other state-of-the-art methods), particularly in terms of classification accuracy. Moreover, we extend and apply the proposed method to credit risk assessment by incorporating the T-test based feature weights. The promising numerical results on benchmark personal credit data and real-world corporate credit data strongly demonstrate the effectiveness, efficiency and interpretability of proposed method, as well as indicate its significant potential in certain real-world applications.
Keywords: Data mining; Unsupervised classification; Kernel-free quadratic surface SVM; Credit risk assessment; Decomposition algorithm (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719306630
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:280:y:2020:i:3:p:1008-1017
DOI: 10.1016/j.ejor.2019.08.010
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().