Optimising cargo loading and ship scheduling in tidal areas
Noémie Le Carrer,
Scott Ferson and
Peter L. Green
European Journal of Operational Research, 2020, vol. 280, issue 3, 1082-1094
Abstract:
This paper describes a framework that combines decision theory and stochastic optimisation techniques to address tide routing (i.e. optimisation of cargo loading and ship scheduling decisions in tidal ports and shallow seas). Unlike weather routing, tidal routing has been little investigated so far, especially from the perspective of risk analysis. Considering the journey of a bulk carrier between N ports, a shipping decision model is designed to compute cargo loading and scheduling decisions, given the time series of the sea level point forecasts in these ports. Two procedures based on particle swarm optimisation and Monte Carlo simulations are used to solve the shipping net benefit constrained optimisation problem. The outputs of probabilistic risk minimisation are compared with those of net benefit maximisation, the latter including the possibility of a ‘rule-of-the-thumb’ safety margin. Distributional robustness is discussed as well, with respect to the modelling of sea level residuals. Our technique is assessed on two realistic case studies in British ports. Results show that the decision taking into account the stochastic dimension of sea levels is not only robust in real port and weather conditions, but also closer to optimality than standard practices using a fixed safety margin. Furthermore, it is shown that the proposed technique remains more interesting when sea level variations are artificially increased beyond the extremes of the current residual models.
Keywords: OR in maritime industry; Simulation; Scheduling; Robust optimisation; Particle swarm optimisation (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171930654X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:280:y:2020:i:3:p:1082-1094
DOI: 10.1016/j.ejor.2019.08.002
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().