Pareto solutions in multicriteria optimization under uncertainty
Alexander Engau and
Devon Sigler
European Journal of Operational Research, 2020, vol. 281, issue 2, 357-368
Abstract:
We present and analyze several definitions of Pareto optimality for multicriteria optimization or decision problems with uncertainty primarily in their objective function values. In comparison to related notions of Pareto robustness, we first provide a full characterization of an alternative efficient set hierarchy that is based on six different ordering relations both with respect to the multiple objectives and a possibly finite, countably infinite or uncountable number of scenarios. We then establish several scalarization results for the generation of the corresponding efficient points using generalized weighted-sum and epsilon-constraint techniques. Finally, we leverage these scalarization results to also derive more general conditions for the existence of efficient points in each of the corresponding optimality classes, under suitable assumptions.
Keywords: Multiple objective programming; Pareto solutions; Optimization under uncertainty; Efficient set hierarchy; Scalarization methods (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719307106
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:281:y:2020:i:2:p:357-368
DOI: 10.1016/j.ejor.2019.08.040
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().