EconPapers    
Economics at your fingertips  
 

Development of a Bayesian Belief Network-based DSS for predicting and understanding freshmen student attrition

Dursun Delen, Kazim Topuz and Enes Eryarsoy

European Journal of Operational Research, 2020, vol. 281, issue 3, 575-587

Abstract: Student attrition – the departure from an institution of higher learning prior to the achievement of a degree or earning due educational credentials – is an administratively important, scientifically interesting and yet practically challenging problem for decision makers and researchers. This study aims to find the prominent variables and their conditional dependencies/interrelations that affect student attrition in college settings. Specifically, using a large and feature-rich dataset, proposed methodology successfully captures the probabilistic interactions between attrition (the dependent variable) and related factors (the independent variables) to reveal the underlying, potentially complex/non-linear relationships. The proposed methodology successfully predicts the individual students' attrition risk through a Bayesian Belief Network-driven probabilistic model. The findings suggest that the proposed probabilistic graphical/network method is capable of predicting student attrition with 84% in AUC – Area Under the Receiver Operating Characteristics Curve. Using a 2-by-2 investigational design framework, this body of research also compares the impact and contribution of data balancing and feature selection to the resultant prediction models. The results show that (1) the imbalanced dataset produces similar predictive results in detecting the at-risk students, and (2) the feature selection, which is the process of identifying and eliminating unnecessary/unimportant predictors, results in simpler, more understandable, interpretable, and actionable results without compromising on the accuracy of the prediction task.

Keywords: Student retention; Prediction; Elastic net; Bayesian Belief Network (BBN); Imbalance data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719302954
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:281:y:2020:i:3:p:575-587

DOI: 10.1016/j.ejor.2019.03.037

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:281:y:2020:i:3:p:575-587