EconPapers    
Economics at your fingertips  
 

Data-driven analytics to support scheduling of multi-priority multi-class patients with wait time targets

Yangzi Jiang, Hossein Abouee-Mehrizi and Yuhe Diao

European Journal of Operational Research, 2020, vol. 281, issue 3, 597-611

Abstract: Magnetic Resonance Image (MRI) uses powerful magnetic forces and radio frequencies to create detailed images of the organs and tissues within the body. In this paper, we first conduct descriptive analytics on MRI data of over 3.7 million patient records and determine the main factors affecting the waiting time and conduct predictive analytics to forecast the daily arrivals and the number of procedures performed at each hospital. It is the hospital’s goal to serve 90% of patients within their wait time targets. Therefore, we prescribe two simple scheduling policies based on a balance between the FIFO (First-In First-Out) and strict priority policies; namely, weight accumulation and priority promotion to improve the wait time management. Under the weight accumulation policy, patients from different priority levels start with varying initial weights, which then accumulates as a linear function of their waiting time. Under the priority promotion policy, a strict priority policy is applied to priority levels where patients are promoted to a higher priority level after waiting for a predetermined threshold of time. We evaluate the proposed policies against two performance measures: total exceeding time (the number of days by which patients exceed their wait target), and overflow proportion (the percentage of patients that exceed the wait target). To investigate the value of information, we schedule patients at different points of time from their day of arrival. The results show that hospitals can enhance their wait time management by delaying patient scheduling. We demonstrate that effective scheduling policies may result in significant reduction in patient waiting time without any costly capacity expansion.

Keywords: Analytics; Multi-class patients; Multi-priority patients; Dynamic scheduling; Advance scheduling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718304119
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:281:y:2020:i:3:p:597-611

DOI: 10.1016/j.ejor.2018.05.017

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:281:y:2020:i:3:p:597-611