EconPapers    
Economics at your fingertips  
 

Predicting product return volume using machine learning methods

Hailong Cui, Sampath Rajagopalan and Amy R. Ward

European Journal of Operational Research, 2020, vol. 281, issue 3, 612-627

Abstract: In 2015, U.S. consumers returned goods worth $261 billion and the return rates for online sales sometimes exceeded 30%. Manufacturers and retailers have an interest in predicting return volume to address operational challenges in managing product returns. In this paper, we develop and test data-driven models for predicting return volume at the retailer, product type and period levels using a rich data set comprised of detailed operations on each product, and retailer information. The goal is to achieve a good prediction accuracy out of sample. We consider main effects and detailed interaction effects models using various machine learning methods. We find that Least Absolute Shrinkage and Selection Operator (LASSO) yields a predictive model achieving the best prediction accuracy for future return volume due to its ability to select informative interaction terms out of more than one thousand possible combinations. The LASSO model also turns in consistent performance based on several robustness tests and is easy to implement in practice. Our work provides a general predictive model framework for manufacturers to track product returns.

Keywords: Analytics; Online returns; Predictive model; Variable selection; LASSO; Machine learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171930517X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:281:y:2020:i:3:p:612-627

DOI: 10.1016/j.ejor.2019.05.046

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:281:y:2020:i:3:p:612-627