Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data
Valentin Zelenyuk
European Journal of Operational Research, 2020, vol. 282, issue 1, 172-187
Abstract:
The main goal of this paper is to explore the possible solutions to a ‘big data’ problem related to the very large dimensions of input–output data. In particular, we focus on the cases of severe ‘curse of dimensionality’ problem that require dimension-reduction prior to using Data Envelopment Analysis. To achieve this goal, we have presented some theoretical grounds and performed a new to the literature simulation study where we explored the price-based aggregation as a solution to address the problem of very large dimensions.
Keywords: Data Envelopment Analysis; Productivity; Efficiency; Big data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719306605
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:282:y:2020:i:1:p:172-187
DOI: 10.1016/j.ejor.2019.08.007
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().