A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters
E. Mosayebi Omshi,
A. Grall and
S. Shemehsavar
European Journal of Operational Research, 2020, vol. 282, issue 1, 81-92
Abstract:
With the development of monitoring equipment, research on condition-based maintenance (CBM) is rapidly growing. CBM optimization aims to find an optimal CBM policy which minimizes the average cost of the system over a specified duration of time. This paper proposes a dynamic auto-adaptive predictive maintenance policy for single-unit systems whose gradual deterioration is governed by an increasing stochastic process. The parameters of the degradation process are assumed to be unknown and Bayes’ theorem is used to update the prior information. The time interval between two successive inspections is scheduled based on the remaining useful life (RUL) of the system and is updated along with the degradation parameters. A procedure is proposed to dynamically adapt the maintenance decision variables accordingly. Finally, different possible maintenance policies are considered and compared to illustrate their performance.
Keywords: Maintenance; Condition-based; Remaining useful life; Increasing stochastic process; Bayesian update (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719307209
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:282:y:2020:i:1:p:81-92
DOI: 10.1016/j.ejor.2019.08.050
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().