On double-boundary non-crossing probability for a class of compound processes with applications
Dimitrina S. Dimitrova,
Zvetan G. Ignatov,
Vladimir K. Kaishev and
Senren Tan
European Journal of Operational Research, 2020, vol. 282, issue 2, 602-613
Abstract:
We develop an efficient method for computing the probability that a non-decreasing, pure jump (compound) stochastic process stays between arbitrary upper and lower boundaries (i.e., deterministic functions, possibly discontinuous) within a finite time period. The compound process is composed of a process modelling the arrivals of certain events (e.g., demands for a product in inventory systems, customers in queuing, or claims/capital gains in insurance/dual risk models), and a sequence of independent and identically distributed random variables modelling the sizes of the events. The events arrival process is assumed to belong to the wide class of point processes with conditional stationary independent increments which includes (non-)homogeneous Poisson, binomial, negative binomial, mixed Poisson and doubly stochastic Poisson (i.e., Cox) processes as special cases. The proposed method is based on expressing the non-exit probability through Chapman–Kolmogorov equations, re-expressing them in terms of a circular convolution of two vectors which is then computed applying fast Fourier transform (FFT). We further demonstrate that our FFT-based method is computationally efficient and can be successfully applied in the context of inventory management (to determine an optimal replenishment policy), ruin theory (to evaluate ruin probabilities and related quantities) and double-barrier option pricing or simply computing non-exit probabilities for Brownian motion with general boundaries.
Keywords: Applied probability; Doubly stochastic Poisson (i.e Cox) processes; Fast Fourier transform; Inventory management under stochastic demand; Finite-time non-ruin probability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171930815X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:282:y:2020:i:2:p:602-613
DOI: 10.1016/j.ejor.2019.09.058
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().