EconPapers    
Economics at your fingertips  
 

An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks

Georgios Manthoulis, Michalis Doumpos, Constantin Zopounidis and Emilios Galariotis

European Journal of Operational Research, 2020, vol. 282, issue 2, 786-801

Abstract: Bank failure prediction models usually combine financial attributes through binary classification approaches. In this study we extend this standard framework in three main directions. First, we explore the predictive power of attributes that describe the diversification of banking operations. Second, we consider the prediction of failure in a multi-period context. Finally, an enhanced ordinal classification framework is introduced, which considers multiple instances of failed banks prior to failure (up to three years prior to bankruptcy). Various ordinal models are developed using techniques from multiple criteria decision analysis, statistics, and machine learning. Moreover, ensemble models based on error-correcting output codes are examined. The analysis is based on a sample consisting of approximately 60,000 observations for banks in the United States over the period 2006–2015. The results show that diversification attributes improve the predictive power of bank failure prediction models, mainly for mid to long-term prediction horizons. Moreover, ordinal classification models provide a better description of the state of the banks prior to failure and are competitive to standard binary classification models.

Keywords: OR in banking; Bank failure prediction; Ordinal classification; Multiple criteria analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719307970
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:282:y:2020:i:2:p:786-801

DOI: 10.1016/j.ejor.2019.09.040

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Haili He ().

 
Page updated 2020-10-03
Handle: RePEc:eee:ejores:v:282:y:2020:i:2:p:786-801