Irregular packing problems: A review of mathematical models
Aline A.S. Leao,
Franklina M.B. Toledo,
José Fernando Oliveira,
Maria Antónia Carravilla and
Ramón Alvarez-Valdés
European Journal of Operational Research, 2020, vol. 282, issue 3, 803-822
Abstract:
Irregular packing problems (also known as nesting problems) belong to the more general class of cutting and packing problems and consist of allocating a set of irregular and regular pieces to larger rectangular or irregular containers, while minimizing the waste of material or space. These problems combine the combinatorial hardness of cutting and packing problems with the computational difficulty of enforcing the geometric non-overlap and containment constraints. Unsurprisingly, nesting problems have been addressed, both in the scientific literature and in real-world applications, by means of heuristic and metaheuristic techniques. However, more recently a variety of mathematical models has been proposed for nesting problems. These models can be used either to provide optimal solutions for nesting problems or as the basis of heuristic approaches based on them (e.g. matheuristics). In both cases, better solutions are sought, with the natural economic and environmental positive impact. Different modeling options are proposed in the literature. We review these mathematical models under a common notation framework, allowing differences and similarities among them to be highlighted. Some insights on weaknesses and strengths are also provided. By building this structured review of mathematical models for nesting problems, research opportunities in the field are proposed.
Keywords: Cutting; Packing; Nesting problem; Irregular packing; Mathematical modeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719303820
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:282:y:2020:i:3:p:803-822
DOI: 10.1016/j.ejor.2019.04.045
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().