On the dynamic allocation of assets subject to failure
Stephen Ford,
Michael P. Atkinson,
Kevin Glazebrook and
Peter Jacko
European Journal of Operational Research, 2020, vol. 284, issue 1, 227-239
Abstract:
Motivated by situations arising in surveillance, search and monitoring, in this paper we study dynamic allocation of assets which tend to fail, requiring replenishment before once again being available for operation on one of the available tasks. We cast the problem as a closed-system continuous-time Markov decision process with impulsive controls, maximising the long-term time-average sum of per-task reward rates. We then formulate an open-system continuous-time approximative model, whose Lagrangian relaxation yields a decomposition (innovatively extending the restless bandits approach), from which we derive the corresponding Whittle index. We propose two ways of adapting the Whittle index derived from the open-system model to the original closed-system model, a naïve one and a cleverly modified one. We carry out extensive numerical performance evaluation of the original closed-system model, which indicates that the cleverly modified Whittle index rule is nearly optimal, being within 1.6% (0.4%, 0.0%) of the optimal reward rate 75% (50%, 25%) of the time, and significantly superior to uniformly random allocation which is within 22.0% (16.2%, 10.7%) of the optimal reward rate. Our numerical results also suggest that the Whittle index must be cleverly modified when adapting it from the open-system, as the naïve Whittle index rule is not superior to a myopic greedy policy.
Keywords: Control; Dynamic programming; Heuristics; Queueing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719310379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:284:y:2020:i:1:p:227-239
DOI: 10.1016/j.ejor.2019.12.018
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().