Optimal control of water distribution networks without storage
Dimitrios Nerantzis,
Filippo Pecci and
Ivan Stoianov
European Journal of Operational Research, 2020, vol. 284, issue 1, 345-354
Abstract:
The paper investigates the problem of optimal control of water distribution networks without storage capacity. Using mathematical optimization, we formulate and solve the problem as a non-convex NLP, in order to obtain optimal control curves for both variable speed pumps and pressure reducing valves of the network and thus propose a methodology for the automated control of real operational networks. We consider both single-objective and multi-objective problems with average zonal pressure, pump energy consumption and water treatment cost as objectives. Furthermore, we investigate global optimality bounds for the calculated solutions using global optimization techniques. The proposed approach is shown to outperform state-of-the-art global optimization solvers. The described procedure is demonstrated in a case study using a large size operational network.
Keywords: Networks; Mathematical optimization; Optimal control; Variable speed pumps; Water distribution systems (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719310124
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:284:y:2020:i:1:p:345-354
DOI: 10.1016/j.ejor.2019.12.011
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().