EconPapers    
Economics at your fingertips  
 

Hybrid stochastic and robust optimization model for lot-sizing and scheduling problems under uncertainties

Zhengyang Hu and Guiping Hu

European Journal of Operational Research, 2020, vol. 284, issue 2, 485-497

Abstract: Uncertainty is among the significant concerns in production scheduling. It has become increasingly important to take uncertainties into consideration for lot-sizing and scheduling. In this paper, we adopt the Hybrid Stochastic and Robust Optimization (HSRO) approach in lot-sizing and scheduling problems in which suppliers have the flexibility of satisfying a fraction of demand based on the market and their policies. Two types of uncertainties have been considered simultaneously: demand and overtime processing cost. Robust optimization is adopted for uncertain demand and Sample Average Approximation (SAA) technique is applied to solve the stochastic program for uncertain overtime processing cost. Numerical results based on a manufacturing company has been conducted to not only validate the proposed hybrid model but also quantitatively demonstrate the merit of our approach. Sample size stability test and sensitivity analyses on various parameters have also been conducted.

Keywords: Supply chain management; Stochastic programming; Robust optimization; Lot-sizing and scheduling; Automotive industry (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719310707
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:284:y:2020:i:2:p:485-497

DOI: 10.1016/j.ejor.2019.12.030

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:485-497