EconPapers    
Economics at your fingertips  
 

Pareto uncertainty index for evaluating and comparing solutions for stochastic multiple objective problems

Saltuk Buğra Selçuklu, David W. Coit and Frank A. Felder

European Journal of Operational Research, 2020, vol. 284, issue 2, 644-659

Abstract: Many engineering problems have multiple conflicting objectives, and they are also stochastic due to inherent uncertainties. One way to represent the multi-objective nature of problems is to use the Pareto optimality to show the trade-off between objectives. Pareto optimality involves the identification of solutions that are not dominated by other solutions based on their respective objective functions. However, the Pareto optimality concept does not contain any information about the uncertainty of solutions. Evaluation and comparison of solutions becomes difficult when the objective functions are subjected to uncertainty. A new metric, the Pareto Uncertainty Index (PUI), is presented. This metric includes uncertainty due to the stochastic coefficients in the objective functions as part of the Pareto optimality concept to form an extended probabilistic Pareto set, we define as the p-Pareto set. The decision maker can observe and assess the randomness of solutions and compare the promising solutions according to their performance of satisfying objectives and any undesirable uncertainty. The PUI is an effective and convenient decision-making tool to compare promising solutions with multiple uncertain objectives.

Keywords: Multiple objective programming; Uncertainty modeling; Pareto (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720300047
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:284:y:2020:i:2:p:644-659

DOI: 10.1016/j.ejor.2020.01.004

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:644-659