Recommendation generation using personalized weight of meta-paths in heterogeneous information networks
Mukul Gupta and
Pradeep Kumar
European Journal of Operational Research, 2020, vol. 284, issue 2, 660-674
Abstract:
In today's era of electronic markets with information overload, generating personalized recommendations for e-commerce users is a challenging and interesting problem. Recommending top-N items of interest to e-commerce users is more challenging using binary implicit feedback. The training data is usually highly sparse and has binary values capturing a user's action or inaction. Due to the sparseness of data and lack of explicit user preferences, neighborhood-based and model-based approaches may not be effective to generate accurate recommendations. Of late, network-based item recommendation methods, which utilize item related meta-information, have started getting attention. In this work, we propose a heterogeneous information network-based recommendation model called HeteroPRS for personalized top-N recommendations using binary implicit feedback. To utilize the potential of meta-information related to items, we use the concept of meta-path. To improve the effectiveness of the recommendations, the popularity of items and interest of users are leveraged simultaneously. Personalized weight learning of various meta-paths in the network is performed to determine the intrinsic interests of users from the binary implicit feedback. The proposed model is experimentally evaluated and compared with various recommendation techniques for implicit feedback using real-world datasets, and the results show the effectiveness of the proposed model.
Keywords: E-commerce; Networks; Recommendation system; Binary implicit feedback; Decision support (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172030031X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:284:y:2020:i:2:p:660-674
DOI: 10.1016/j.ejor.2020.01.010
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().