EconPapers    
Economics at your fingertips  
 

A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem

Jan Gmys, Mohand Mezmaz, Nouredine Melab and Daniel Tuyttens

European Journal of Operational Research, 2020, vol. 284, issue 3, 814-833

Abstract: In this work we propose an efficient branch-and-bound (B&B) algorithm for the permutation flow-shop problem (PFSP) with makespan objective. We present a new node decomposition scheme that combines dynamic branching and lower bound refinement strategies in a computationally efficient way. To alleviate the computational burden of the two-machine bound used in the refinement stage, we propose an online learning-inspired mechanism to predict promising couples of bottleneck machines. The algorithm offers multiple choices for branching and bounding operators and can explore the search tree either sequentially or in parallel on multi-core CPUs. In order to empirically determine the most efficient combination of these components, a series of computational experiments with 600 benchmark instances is performed. A main insight is that the problem size, as well as interactions between branching and bounding operators substantially modify the trade-off between the computational requirements of a lower bound and the achieved tree size reduction. Moreover, we demonstrate that parallel tree search is a key ingredient for the resolution of large problem instances, as strong super-linear speedups can be observed. An overall evaluation using two well-known benchmarks indicates that the proposed approach is superior to previously published B&B algorithms. For the first benchmark we report the exact resolution – within less than 20 minutes – of two instances defined by 500 jobs and 20 machines that remained open for more than 25 years, and for the second a total of 89 improved best-known upper bounds, including proofs of optimality for 74 of them.

Keywords: Branch-and-Bound; Flowshop; Makespan; Parallel computing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172030076X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:284:y:2020:i:3:p:814-833

DOI: 10.1016/j.ejor.2020.01.039

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:814-833