A multicut outer-approximation approach for competitive facility location under random utilities
Tien Mai and
Andrea Lodi
European Journal of Operational Research, 2020, vol. 284, issue 3, 874-881
Abstract:
This work concerns the maximum capture facility location problem with random utilities, i.e., the problem of seeking to locate new facilities in a competitive market such that the captured demand of users is maximized, assuming that each individual chooses among all available facilities according to a random utility maximization model. The main challenge lies in the nonlinearity of the objective function. Motivated by the convexity and separable structure of such an objective function, we propose an enhanced implementation of the outer approximation scheme. Our algorithm works in a cutting plane fashion and allows to separate the objective function into a number of sub-functions and create linear cuts for each sub-function at each outer-approximation iteration. We compare our approach with the state-of-the-art method and, for the first time in an extensive way, with other existing nonlinear solvers using three data sets from recent literature. Our experiments show the robustness of our approach, especially on large instances, in terms of both computing time and number instances solved to optimality.
Keywords: Facilities planning and design; Maximum capture; Multinomial logit; Mixed multinomial logit; Multicut outer-approximation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720300412
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:284:y:2020:i:3:p:874-881
DOI: 10.1016/j.ejor.2020.01.020
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().