EconPapers    
Economics at your fingertips  
 

On a High-Dimensional Model Representation method based on Copulas

Mike Tsionas and Athanasios Andrikopoulos

European Journal of Operational Research, 2020, vol. 284, issue 3, 967-979

Abstract: This article provides an alternative to High-Dimensional Model Representation using a Copula approximation of an unknown functional form. We apply our methodology in the context of an extensive Monte Carlo study and to a sample of large US commercial banks. In the Monte Carlo experiment, the approximations errors of the Copula approach are small and behave randomly. In our empirical application, we find that the Copula Approximation performs much better, in terms of Bayes factors for model comparison, compared to High-Dimensional Model Representation, which, in turn, provides better results when compared with standard flexible functional forms, like the translog, the minflex Laurent, and the Generalized Leontief, or a Multilayer Perceptron. Moreover, the choice of approximation has significant implications for productivity and its components (returns to scale, technical inefficiency, technical change, and efficiency change).

Keywords: Productivity and Competitiveness; Copula; High Dimensional Model Representation; Multilayer perceptron; Bayesian analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720300473
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:284:y:2020:i:3:p:967-979

DOI: 10.1016/j.ejor.2020.01.026

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:967-979