Entropy based risk measures
Alois Pichler and
Ruben Schlotter
European Journal of Operational Research, 2020, vol. 285, issue 1, 223-236
Abstract:
Entropy is a measure of self-information which is used to quantify information losses. Entropy was developed in thermodynamics, but is also used to compare probabilities based on their deviating information content. Corresponding model uncertainty is of particular interest and importance in stochastic programming and its applications like mathematical finance, as complete information is not accessible or manageable in general.
Keywords: Risk measures; Rearrangement inequalities; Stochastic dominance; Dual representation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719300189
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:285:y:2020:i:1:p:223-236
DOI: 10.1016/j.ejor.2019.01.016
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().