Recent advances in selection hyper-heuristics
John H. Drake,
Ahmed Kheiri,
Ender Özcan and
Edmund K. Burke
European Journal of Operational Research, 2020, vol. 285, issue 2, 405-428
Abstract:
Hyper-heuristics have emerged as a way to raise the level of generality of search techniques for computational search problems. This is in contrast to many approaches, which represent customised methods for a single problem domain or a narrow class of problem instances. The term hyper-heuristic was defined in the early 2000s as a heuristic to choose heuristics, but the idea of designing high-level heuristic methodologies can be traced back to the early 1960s. The current state-of-the-art in hyper-heuristic research comprises a set of methods that are broadly concerned with intelligently selecting or generating a suitable heuristic for a given situation. Hyper-heuristics can be considered as search methods that operate on lower-level heuristics or heuristic components, and can be categorised into two main classes: heuristic selection and heuristic generation. Here we will focus on the first of these two categories, selection hyper-heuristics. This paper gives a brief history of this emerging area, reviews contemporary selection hyper-heuristic literature, and discusses recent selection hyper-heuristic frameworks. In addition, the existing classification of selection hyper-heuristics is extended, in order to reflect the nature of the challenges faced in contemporary research. Unlike the survey on hyper-heuristics published in 2013, this paper focuses only on selection hyper-heuristics and presents critical discussion, current research trends and directions for future research.
Keywords: Decision support systems; Artificial intelligence; Machine learning; Metaheuristics; Heuristics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719306526
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:285:y:2020:i:2:p:405-428
DOI: 10.1016/j.ejor.2019.07.073
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().