Nonparametric advertising budget allocation with inventory constraint
Chaolin Yang and
Yi Xiong
European Journal of Operational Research, 2020, vol. 285, issue 2, 631-641
Abstract:
In this paper, we study the optimization problem of the advertising budget allocation for revenue management faced by a marketer. Besides the advertising budget, the marketer is subject to an inventory constraint during the promotion season. The marketer can affect sales by spending on advertising but does not initially know the relationship between the advertising expense and consequent sales. We propose a nonparametric learning-while-doing budget allocation policy for the problem. Specifically, we first conduct a sequence of advertising experiments to learn (predict) the market sales response through observing realized sales (exploration), then based on the learned sales function determine the following budget allocation planning (exploitation). In particular, during the exploration and exploitation phases, we need to balance the advertising and inventory budgets simultaneously. We show that our policy is asymptotically optimal as the size of the market increases. By constructing a worst-case example, we show that our policy achieves near-best asymptotic performance. We also provide numerical illustrations to show how our policy works, and discuss how its performance changes as the system parameters vary. We also glen some managerial implications of our model and policy from the numerical results.
Keywords: Revenue management; Advertising budget allocation; Nonparametric; Dynamic learning; Asymptotic optimality (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720301235
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:285:y:2020:i:2:p:631-641
DOI: 10.1016/j.ejor.2020.02.005
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().