A data envelopment analysis and local partial least squares approach for identifying the optimal innovation policy direction
Panagiotis Tziogkidis (),
Dionisis Philippas,
Alexandros Leontitsis and
Robin Sickles
European Journal of Operational Research, 2020, vol. 285, issue 3, 1011-1024
Abstract:
The paper proposes a novel two-step approach that evaluates countries’ innovation efficiency and their responsiveness to expansions in their innovation inputs, while addressing shortcomings associated with composite indicators. Based on our evaluations, we propose innovation policies tailored to take into account the diverse economic environments of the many countries in our study. Applying multidirectional efficiency analysis on data from the Global Innovation Index, we obtain separate efficiency scores for each innovation input and output. We then estimate different sensitivities for each country, by applying partial least squares on explanatory and response matrices which are determined by the nearest neighbors of the country under consideration. The findings reveal substantial asymmetries with respect to innovation efficiencies and sensitivities, which is indicative of the diversity of national innovation systems. Considering these two dimensions in combination, we outline three policy directions that can be followed, offering a platform for better-informed decision-making.
Keywords: Data envelopment analysis; Multi-directional efficiency analysis; Nearest neighbors; Innovation policy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720301417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:285:y:2020:i:3:p:1011-1024
DOI: 10.1016/j.ejor.2020.02.023
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().