EconPapers    
Economics at your fingertips  
 

A new correlation coefficient for comparing and aggregating non-strict and incomplete rankings

Yeawon Yoo, Adolfo R. Escobedo and J. Kyle Skolfield

European Journal of Operational Research, 2020, vol. 285, issue 3, 1025-1041

Abstract: We introduce a correlation coefficient that is designed to deal with a variety of ranking formats including those containing non-strict (i.e., with-ties) and incomplete (i.e., unknown) preferences. The correlation coefficient is designed to enforce a neutral treatment of incompleteness whereby no assumptions are made about individual preferences involving unranked objects. The new measure, which can be regarded as a generalization of the seminal Kendall tau correlation coefficient, is proven to satisfy a set of metric-like axioms and to be equivalent to a recently developed ranking distance function associated with Kemeny aggregation. In an effort to further unify and enhance both robust ranking methodologies, this work proves the equivalence of an additional distance and correlation-coefficient pairing in the space of non-strict incomplete rankings. These connections induce new exact optimization methodologies: a specialized branch and bound algorithm and an exact integer programming formulation. Moreover, the bridging of these complementary theories reinforces the singular suitability of the featured correlation coefficient to solve the general consensus ranking problem. The latter premise is bolstered by an accompanying set of experiments on random instances, which are generated via a herein developed sampling technique connected with the classic Mallows distribution of ranking data. Associated experiments with the branch and bound algorithm demonstrate that, as data becomes noisier, the featured correlation coefficient yields relatively fewer alternative optimal solutions and that the aggregate rankings tend to be closer to an underlying ground truth shared by a majority.

Keywords: Group decisions and negotiations; Robust ranking aggregation; Correlation and distance functions; Non-strict incomplete rankings (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720301454
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:285:y:2020:i:3:p:1025-1041

DOI: 10.1016/j.ejor.2020.02.027

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:285:y:2020:i:3:p:1025-1041