EconPapers    
Economics at your fingertips  
 

Optimizing predictive precision in imbalanced datasets for actionable revenue change prediction

Pravar Dilip Mahajan, Abhinav Maurya, Aly Megahed, Alaa Elwany, Ray Strong and Jeanette Blomberg

European Journal of Operational Research, 2020, vol. 285, issue 3, 1095-1113

Abstract: In business environments where an organization offers contract-based periodic services to its clients, one crucial task is to predict changes in revenues generated through different clients or specific service offerings from one time epoch to another. This is commonly known as the revenue change prediction problem. In practical real-world environments, the importance of having adequate revenue change prediction capability primarily stems from scarcity of resources (in particular, sales team personnel or technical consultants) that are needed to respond to different revenue change scenarios including predicted revenue growth or shrinkage. It becomes important to make actionable decisions; that is, decisions related to prioritizing clients or service offerings to which these scarce resources are to be allocated. The contribution of the current work is twofold. First, we propose a framework for conducting revenue change prediction through casting it as a classification problem. Second, since datasets associated with revenue change prediction are typically imbalanced, we develop a new methodology for solving the classification problem such that we achieve maximum prediction precision while minimizing sacrifice in prediction accuracy. We validate our proposed framework through real-world datasets acquired from a major global provider of cloud computing services, and benchmark its performance against standard classifiers from previous works in the literature.

Keywords: (D) Analytics; Revenue change prediction; Classification; Machine learning; Bayesian optimization; Imbalanced datasets (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720301715
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:285:y:2020:i:3:p:1095-1113

DOI: 10.1016/j.ejor.2020.02.036

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:285:y:2020:i:3:p:1095-1113