Next-day operating room scheduling with uncertain surgery durations: Exact analysis and heuristics
Taghi Khaniyev,
Enis Kayış and
Refik Güllü
European Journal of Operational Research, 2020, vol. 286, issue 1, 49-62
Abstract:
Operating rooms are units of particular interest in hospitals as they constitute more than 40% of total expenses and revenues. Managing operating rooms is challenging due to conflicting priorities and preferences of various stakeholders and the inherent uncertainty of surgery durations. In this study, we consider the next-day scheduling problem of a hospital operating room. Given the list and the sequence of non-identical surgeries to be performed in the next day, one needs to determine the scheduled durations of surgeries where the actual duration of each surgery is uncertain. Our objective is to minimize the weighted sum of expected patient waiting times, room idle time and overtime. First, we provide a reformulation of the objective function in terms of auxiliary functions with a recursive pattern that enables exact analysis of the optimal surgery durations at the expense of high CPU time. Next, we develop and analyze simple-to-use and close-to-optimal scheduling heuristics motivated by practice, for the OR managers to deploy in the field. Our proposed hybrid heuristic attains 1.22% average performance gap and worst average optimality gap of 2.77%. Our solution is easy to implement as it does not require any advanced optimization tool, which is the reality of many operating room environments.
Keywords: OR in health services; Operating room planning; Scheduling; Stochastic optimization; Heuristics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720302162
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:286:y:2020:i:1:p:49-62
DOI: 10.1016/j.ejor.2020.03.002
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().