Tightening big Ms in integer programming formulations for support vector machines with ramp loss
Marta Baldomero-Naranjo,
Luisa I. Martínez-Merino and
Antonio M. Rodríguez-Chía
European Journal of Operational Research, 2020, vol. 286, issue 1, 84-100
Abstract:
This paper considers various models of support vector machines with ramp loss, these being an efficient and robust tool in supervised classification for the detection of outliers. The exact solution approaches for the resulting optimization problem are of high demand for large datasets. Hence, the goal of this paper is to develop algorithms that provide efficient methodologies to exactly solve these optimization problems. These approaches are based on three strategies for obtaining tightened values of the big M parameters included in the formulation of the problem. Two of them require solving a sequence of continuous problems, while the third uses the Lagrangian relaxation to tighten the bounds. The proposed resolution methods are valid for the ℓ1-norm and ℓ2-norm ramp loss formulations. They were tested and compared with existing solution methods in simulated and real-life datasets, showing the efficiency of the developed methodology.
Keywords: Location; Support vector machine; Ramp loss model; Mixed integer programming; Indicator constraints (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172030237X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:286:y:2020:i:1:p:84-100
DOI: 10.1016/j.ejor.2020.03.023
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().