Portfolio diversification based on stochastic dominance under incomplete probability information
Juuso Liesiö,
Peng Xu and
Timo Kuosmanen
European Journal of Operational Research, 2020, vol. 286, issue 2, 755-768
Abstract:
Identifying efficient portfolio diversification strategies subject to stochastic dominance (SD) criteria usually assumes that the state-space of future asset returns can be captured by a fixed sample of equally probable historical returns. This paper relaxes this assumption by developing SD criteria under incomplete information on state probabilities. Specifically, we identify portfolios that dominate a given benchmark for any state probabilities in a given set. The proposed approach is applied to analyze if industrial diversification can be utilized to outperform the market portfolio. The results from this application demonstrate that the use of set-valued state probabilities can help to improve out-of-sample performance of SD-based portfolio optimization.
Keywords: Decision analysis; Finance; Stochastic dominance; Portfolio diversification; Incomplete probability information (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720302563
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:286:y:2020:i:2:p:755-768
DOI: 10.1016/j.ejor.2020.03.042
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().