Adversarial risk analysis under partial information
Juho Roponen,
David Ríos Insua and
Ahti Salo
European Journal of Operational Research, 2020, vol. 287, issue 1, 306-316
Abstract:
Adversarial risk analysis provides one-sided decision support to decision makers faced with risks due to the actions of other parties who act in their own interest. It is therefore relevant for the management of security risks, because the likely actions of the adversary can, to some extent, be forecast by formulating and solving decision models which explicitly capture the adversary’s objectives, actions, and beliefs. Yet, while the development of these decision models sets adversarial risk analysis apart from other approaches, the exact specification of the adversary’s decision model can pose challenges. In response to this recognition, and with the aim of facilitating the use of adversarial risk analysis when the parameters of the decision model are not completely known, we develop methods for characterizing the adversary’s likely actions based on concepts of partial information, stochastic dominance and decision rules. Furthermore, we consider situations in which information about the beliefs and preferences of all parties may be incomplete. We illustrate our contributions with a realistic case study of military planning in which the Defender seeks to protect a supply company from the Attacker who uses unmanned aerial vehicles for surveillance and the acquisition of artillery targets.
Keywords: Risk analysis; Decision analysis; Game theory; Stochastic dominance; Combat modeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720303908
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:287:y:2020:i:1:p:306-316
DOI: 10.1016/j.ejor.2020.04.037
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().